\(\int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx\) [639]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 229 \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\frac {i \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a-b} d}-\frac {i \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a+b} d}-\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}} \]

[Out]

I*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/d/(I*a-b)^(1/2)-I*arctanh((I*a+b)^(1/2)*tan(d*
x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/d/(I*a+b)^(1/2)+2/15*(15*a^2-8*b^2)*(a+b*tan(d*x+c))^(1/2)/a^3/d/tan(d*x+c)
^(1/2)-2/5*(a+b*tan(d*x+c))^(1/2)/a/d/tan(d*x+c)^(5/2)+8/15*b*(a+b*tan(d*x+c))^(1/2)/a^2/d/tan(d*x+c)^(3/2)

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3650, 3730, 3731, 12, 3656, 924, 95, 211, 214} \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}}+\frac {i \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {i \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}-\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[1/(Tan[c + d*x]^(7/2)*Sqrt[a + b*Tan[c + d*x]]),x]

[Out]

(I*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) - (I*ArcTanh[(Sqrt[I
*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d) - (2*Sqrt[a + b*Tan[c + d*x]])/(5*a*d
*Tan[c + d*x]^(5/2)) + (8*b*Sqrt[a + b*Tan[c + d*x]])/(15*a^2*d*Tan[c + d*x]^(3/2)) + (2*(15*a^2 - 8*b^2)*Sqrt
[a + b*Tan[c + d*x]])/(15*a^3*d*Sqrt[Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 924

Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*((a_.) + (c_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegr
and[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), (d + e*x)^(m + 1/2)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &
& NeQ[c*d^2 + a*e^2, 0] && IGtQ[m + 1/2, 0]

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3656

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b*ff*x)^m*((c + d*ff*x)^n/(1 + ff^2*x^2)), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3731

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*t
an[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 + a^2*C)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x]
)^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[
e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2)) - a*C*(b*c*(m + 1)
 + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - b*C)*Tan[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 2)*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^
2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 \int \frac {2 b+\frac {5}{2} a \tan (c+d x)+2 b \tan ^2(c+d x)}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx}{5 a} \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 \int \frac {\frac {1}{4} \left (-15 a^2+8 b^2\right )+2 b^2 \tan ^2(c+d x)}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx}{15 a^2} \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}}-\frac {8 \int -\frac {15 a^3 \sqrt {\tan (c+d x)}}{8 \sqrt {a+b \tan (c+d x)}} \, dx}{15 a^3} \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}}+\int \frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {\sqrt {x}}{\sqrt {a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d} \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}}+\frac {\text {Subst}\left (\int \left (-\frac {1}{2 (i-x) \sqrt {x} \sqrt {a+b x}}+\frac {1}{2 \sqrt {x} (i+x) \sqrt {a+b x}}\right ) \, dx,x,\tan (c+d x)\right )}{d} \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{(i-x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {\text {Subst}\left (\int \frac {1}{\sqrt {x} (i+x) \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = -\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{i-(-a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {\text {Subst}\left (\int \frac {1}{i-(a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d} \\ & = \frac {i \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a-b} d}-\frac {i \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a+b} d}-\frac {2 \sqrt {a+b \tan (c+d x)}}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {8 b \sqrt {a+b \tan (c+d x)}}{15 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (15 a^2-8 b^2\right ) \sqrt {a+b \tan (c+d x)}}{15 a^3 d \sqrt {\tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.92 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.86 \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\frac {-\frac {15 \sqrt [4]{-1} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}+\frac {15 \sqrt [4]{-1} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}+\frac {2 \sqrt {a+b \tan (c+d x)} \left (-3 a^2+4 a b \tan (c+d x)+\left (15 a^2-8 b^2\right ) \tan ^2(c+d x)\right )}{a^3 \tan ^{\frac {5}{2}}(c+d x)}}{15 d} \]

[In]

Integrate[1/(Tan[c + d*x]^(7/2)*Sqrt[a + b*Tan[c + d*x]]),x]

[Out]

((-15*(-1)^(1/4)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[-a + I*
b] + (15*(-1)^(1/4)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a + I
*b] + (2*Sqrt[a + b*Tan[c + d*x]]*(-3*a^2 + 4*a*b*Tan[c + d*x] + (15*a^2 - 8*b^2)*Tan[c + d*x]^2))/(a^3*Tan[c
+ d*x]^(5/2)))/(15*d)

Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 0.65 (sec) , antiderivative size = 947049, normalized size of antiderivative = 4135.59

\[\text {output too large to display}\]

[In]

int(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4103 vs. \(2 (183) = 366\).

Time = 0.68 (sec) , antiderivative size = 4103, normalized size of antiderivative = 17.92 \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/120*(15*a^3*d*sqrt(((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b)/((a^2 + b^2)*d^2))*log((2
*(2*a^4*b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2 + 4*a*b^4)*tan(d*x + c) + (2*(a^5*b + 3*a^3*b^3 + 2*a*b^5)*d^2*tan(d*
x + c) - (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4*b^6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(b*tan(d*x +
 c) + a)*sqrt(tan(d*x + c)) + ((a^6 + 7*a^4*b^2 + 12*a^2*b^4)*d*tan(d*x + c)^2 + 2*(a^5*b + a^3*b^3 - 4*a*b^5)
*d*tan(d*x + c) - (a^6 + 3*a^4*b^2 + 4*a^2*b^4)*d - 2*((a^4*b^3 + 5*a^2*b^5 + 4*b^7)*d^3*tan(d*x + c)^2 + (a^7
 + 6*a^5*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*tan(d*x + c) + (a^6*b + 3*a^4*b^3 + 2*a^2*b^5)*d^3)*sqrt(-a^2/((a^4 +
 2*a^2*b^2 + b^4)*d^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b)/((a^2 + b^2)*d^2)
))/(tan(d*x + c)^2 + 1))*tan(d*x + c)^3 + 15*a^3*d*sqrt(((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^
4)) - b)/((a^2 + b^2)*d^2))*log(-(2*(2*a^4*b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2 + 4*a*b^4)*tan(d*x + c) + (2*(a^5*
b + 3*a^3*b^3 + 2*a*b^5)*d^2*tan(d*x + c) - (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4*b^6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2
*b^2 + b^4)*d^4)))*sqrt(b*tan(d*x + c) + a)*sqrt(tan(d*x + c)) + ((a^6 + 7*a^4*b^2 + 12*a^2*b^4)*d*tan(d*x + c
)^2 + 2*(a^5*b + a^3*b^3 - 4*a*b^5)*d*tan(d*x + c) - (a^6 + 3*a^4*b^2 + 4*a^2*b^4)*d - 2*((a^4*b^3 + 5*a^2*b^5
 + 4*b^7)*d^3*tan(d*x + c)^2 + (a^7 + 6*a^5*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*tan(d*x + c) + (a^6*b + 3*a^4*b^3
+ 2*a^2*b^5)*d^3)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2
+ b^4)*d^4)) - b)/((a^2 + b^2)*d^2)))/(tan(d*x + c)^2 + 1))*tan(d*x + c)^3 - 15*a^3*d*sqrt(((a^2 + b^2)*d^2*sq
rt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b)/((a^2 + b^2)*d^2))*log((2*(2*a^4*b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2
+ 4*a*b^4)*tan(d*x + c) + (2*(a^5*b + 3*a^3*b^3 + 2*a*b^5)*d^2*tan(d*x + c) - (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4
*b^6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(b*tan(d*x + c) + a)*sqrt(tan(d*x + c)) - ((a^6 + 7*a
^4*b^2 + 12*a^2*b^4)*d*tan(d*x + c)^2 + 2*(a^5*b + a^3*b^3 - 4*a*b^5)*d*tan(d*x + c) - (a^6 + 3*a^4*b^2 + 4*a^
2*b^4)*d - 2*((a^4*b^3 + 5*a^2*b^5 + 4*b^7)*d^3*tan(d*x + c)^2 + (a^7 + 6*a^5*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*
tan(d*x + c) + (a^6*b + 3*a^4*b^3 + 2*a^2*b^5)*d^3)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(((a^2 + b^2
)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b)/((a^2 + b^2)*d^2)))/(tan(d*x + c)^2 + 1))*tan(d*x + c)^3 -
 15*a^3*d*sqrt(((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b)/((a^2 + b^2)*d^2))*log(-(2*(2*a^
4*b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2 + 4*a*b^4)*tan(d*x + c) + (2*(a^5*b + 3*a^3*b^3 + 2*a*b^5)*d^2*tan(d*x + c)
 - (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4*b^6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(b*tan(d*x + c) +
a)*sqrt(tan(d*x + c)) - ((a^6 + 7*a^4*b^2 + 12*a^2*b^4)*d*tan(d*x + c)^2 + 2*(a^5*b + a^3*b^3 - 4*a*b^5)*d*tan
(d*x + c) - (a^6 + 3*a^4*b^2 + 4*a^2*b^4)*d - 2*((a^4*b^3 + 5*a^2*b^5 + 4*b^7)*d^3*tan(d*x + c)^2 + (a^7 + 6*a
^5*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*tan(d*x + c) + (a^6*b + 3*a^4*b^3 + 2*a^2*b^5)*d^3)*sqrt(-a^2/((a^4 + 2*a^2
*b^2 + b^4)*d^4)))*sqrt(((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - b)/((a^2 + b^2)*d^2)))/(ta
n(d*x + c)^2 + 1))*tan(d*x + c)^3 + 15*a^3*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) +
 b)/((a^2 + b^2)*d^2))*log((2*(2*a^4*b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2 + 4*a*b^4)*tan(d*x + c) - (2*(a^5*b + 3*
a^3*b^3 + 2*a*b^5)*d^2*tan(d*x + c) - (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4*b^6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2*b^2 +
 b^4)*d^4)))*sqrt(b*tan(d*x + c) + a)*sqrt(tan(d*x + c)) + ((a^6 + 7*a^4*b^2 + 12*a^2*b^4)*d*tan(d*x + c)^2 +
2*(a^5*b + a^3*b^3 - 4*a*b^5)*d*tan(d*x + c) - (a^6 + 3*a^4*b^2 + 4*a^2*b^4)*d + 2*((a^4*b^3 + 5*a^2*b^5 + 4*b
^7)*d^3*tan(d*x + c)^2 + (a^7 + 6*a^5*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*tan(d*x + c) + (a^6*b + 3*a^4*b^3 + 2*a^
2*b^5)*d^3)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(-((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4
)*d^4)) + b)/((a^2 + b^2)*d^2)))/(tan(d*x + c)^2 + 1))*tan(d*x + c)^3 + 15*a^3*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-
a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + b)/((a^2 + b^2)*d^2))*log(-(2*(2*a^4*b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2 + 4
*a*b^4)*tan(d*x + c) - (2*(a^5*b + 3*a^3*b^3 + 2*a*b^5)*d^2*tan(d*x + c) - (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4*b^
6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(b*tan(d*x + c) + a)*sqrt(tan(d*x + c)) + ((a^6 + 7*a^4*
b^2 + 12*a^2*b^4)*d*tan(d*x + c)^2 + 2*(a^5*b + a^3*b^3 - 4*a*b^5)*d*tan(d*x + c) - (a^6 + 3*a^4*b^2 + 4*a^2*b
^4)*d + 2*((a^4*b^3 + 5*a^2*b^5 + 4*b^7)*d^3*tan(d*x + c)^2 + (a^7 + 6*a^5*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*tan
(d*x + c) + (a^6*b + 3*a^4*b^3 + 2*a^2*b^5)*d^3)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(-((a^2 + b^2)*
d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + b)/((a^2 + b^2)*d^2)))/(tan(d*x + c)^2 + 1))*tan(d*x + c)^3 - 1
5*a^3*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + b)/((a^2 + b^2)*d^2))*log((2*(2*a^4*
b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2 + 4*a*b^4)*tan(d*x + c) - (2*(a^5*b + 3*a^3*b^3 + 2*a*b^5)*d^2*tan(d*x + c) -
 (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4*b^6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(b*tan(d*x + c) + a)
*sqrt(tan(d*x + c)) - ((a^6 + 7*a^4*b^2 + 12*a^2*b^4)*d*tan(d*x + c)^2 + 2*(a^5*b + a^3*b^3 - 4*a*b^5)*d*tan(d
*x + c) - (a^6 + 3*a^4*b^2 + 4*a^2*b^4)*d + 2*((a^4*b^3 + 5*a^2*b^5 + 4*b^7)*d^3*tan(d*x + c)^2 + (a^7 + 6*a^5
*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*tan(d*x + c) + (a^6*b + 3*a^4*b^3 + 2*a^2*b^5)*d^3)*sqrt(-a^2/((a^4 + 2*a^2*b
^2 + b^4)*d^4)))*sqrt(-((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + b)/((a^2 + b^2)*d^2)))/(tan
(d*x + c)^2 + 1))*tan(d*x + c)^3 - 15*a^3*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) +
b)/((a^2 + b^2)*d^2))*log(-(2*(2*a^4*b + 4*a^2*b^3 + (a^5 + 3*a^3*b^2 + 4*a*b^4)*tan(d*x + c) - (2*(a^5*b + 3*
a^3*b^3 + 2*a*b^5)*d^2*tan(d*x + c) - (a^6 + 4*a^4*b^2 + 7*a^2*b^4 + 4*b^6)*d^2)*sqrt(-a^2/((a^4 + 2*a^2*b^2 +
 b^4)*d^4)))*sqrt(b*tan(d*x + c) + a)*sqrt(tan(d*x + c)) - ((a^6 + 7*a^4*b^2 + 12*a^2*b^4)*d*tan(d*x + c)^2 +
2*(a^5*b + a^3*b^3 - 4*a*b^5)*d*tan(d*x + c) - (a^6 + 3*a^4*b^2 + 4*a^2*b^4)*d + 2*((a^4*b^3 + 5*a^2*b^5 + 4*b
^7)*d^3*tan(d*x + c)^2 + (a^7 + 6*a^5*b^2 + 13*a^3*b^4 + 8*a*b^6)*d^3*tan(d*x + c) + (a^6*b + 3*a^4*b^3 + 2*a^
2*b^5)*d^3)*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(-((a^2 + b^2)*d^2*sqrt(-a^2/((a^4 + 2*a^2*b^2 + b^4
)*d^4)) + b)/((a^2 + b^2)*d^2)))/(tan(d*x + c)^2 + 1))*tan(d*x + c)^3 - 16*(4*a*b*tan(d*x + c) + (15*a^2 - 8*b
^2)*tan(d*x + c)^2 - 3*a^2)*sqrt(b*tan(d*x + c) + a)*sqrt(tan(d*x + c)))/(a^3*d*tan(d*x + c)^3)

Sympy [F]

\[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {1}{\sqrt {a + b \tan {\left (c + d x \right )}} \tan ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate(1/tan(d*x+c)**(7/2)/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*tan(c + d*x))*tan(c + d*x)**(7/2)), x)

Maxima [F]

\[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^(7/2)), x)

Giac [F(-1)]

Timed out. \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{7/2}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}} \,d x \]

[In]

int(1/(tan(c + d*x)^(7/2)*(a + b*tan(c + d*x))^(1/2)),x)

[Out]

int(1/(tan(c + d*x)^(7/2)*(a + b*tan(c + d*x))^(1/2)), x)